The Ohio Aerospace Institute
Welcome
PJ Menner, Commercial Specialist, U.S. Embassy, London

Paul (PJ) Menner has been a Commercial Specialist for the defense and aerospace sectors at the U.S. Embassy, London since July 2013. He graduated from Miami University, Ohio in 1988 with a BA in Political Science. After graduation, he was commissioned an Ensign in the U.S. Navy and qualified as a naval aviator. He spent 10 years on active duty as a helicopter pilot, during which time he participated in Operation Desert Storm and numerous other operations. He served as a Detachment Officer-in-Charge and qualified as a Combat Information Center Watch Officer. He flew over 2,000 hours and was a maintenance test pilot, standardization pilot and flight instructor.

After leaving active service in 1998, Menner continued to serve in the U.S. Navy Reserve and qualified as a commercial airline pilot, accruing in excess of 4,000 flying hours on numerous different types of multi-engine passenger aircraft for Skywest Airlines, Continental Airlines and United Airlines.

While serving in the U.S. Navy Reserve between 2002 and 2003, PJ Menner was the Joint Operations Center Executive Officer at the U.S. European Command. In 2005 he served as the U.S. Naval Forces Europe director of the Navy Maritime Partnership Program. In 2008 he served as the Assistant Naval Programs Officer in the Office of Defense Cooperation, London. In September 2008 he also deployed with the U.S. European Command to Tbilisi, Georgia and served as the Plans and Policy Officer to assess the capability of the Georgian armed forces.

Between October 2009 and June 2013 Menner worked for the Defense Contract Management Agency, Northern Europe, as a management and program analyst.
AEROSPACE, DEFENSE AND SPACE OPPORTUNITIES IN THE UK

PJ Menner, U.S. Commercial Service UK

@Export2Europe
#Export2Europe
Global Aerospace Market

- Of all revenue generated in the global aerospace and defense industry, the U.S. generates 60% of the revenue and Europe generates 35% leaving the rest of the world a 5% share.

- The UK is one of the single largest aerospace markets in the world outside of the U.S.
UK aerospace sector has an annual turnover of approximately $45 billion.

The UK does not produce any large civil aircraft and 95 percent of aerospace output is exported.

The UK has a reputation as a center of excellence for the design and production of aerostructures, aircraft propulsion, aircraft systems, aircraft interiors and through-life services.

The UK has a large MRO sector, servicing the huge numbers of military and civil aircraft that fly through and from the UK every year.
The UK has a highly-developed and competitive aerospace industry in which more than 3,000 aerospace companies operate.

There are multiple OEMs in the UK aerospace supply chain, namely Rolls-Royce, Airbus, Leonardo and BAE Systems. There are many U.S. OEMs in the UK as well.

Major players include Moog, GKN, Spirit, Meggitt, Marshall Aerospace, Honeywell, Safran, and Teledyne.

There are 100 to 200 Tier 2 companies including Ultra Electronics, Firth Rixson, Gardner Aerospace and RLC Group.

There are over 800 Tier 3 companies.
Disruption...
The impact of the disruption to the commercial aerospace sector has been significant and the road to recovery will be lengthy.
Becoming a supplier in Europe

On Babcock Internationals website it states:

“Becoming a supplier to Babcock - Can you do something better than a current supplier?”

And

“Based on our customer requirements, Babcock are interested in speaking to suppliers who help us to reduce the overall costs for our customers and who work with us in delivering innovative new solutions and external best practice.”
UK and European primes continue to decrease their number of suppliers, preferring to work with a handful of major tier 1 partners and referring all other potential suppliers to its supply chain at the appropriate level.

While it’s possible to supply at an OEM level, getting access to the supply chain on the first, second or third tier should be faster.

The overall best prospect is through new equipment development or an increase in demand by the OEM.
A crowded market continued

Not an easy to process to determine where you fit in the supply chain and where you might have the best opportunity to succeed. Do you homework!

The Commercial Service has an extensive list of companies involved in the aerospace & defense industry and a list of events that create opportunities.

Entering the European market requires a long-term approach.
Best prospects for the commercial UK Aerospace Market

Develop new innovative technologies that meet the customer’s requirements.

- Engines
- Wings and Aero Structures
- Electrical Sensing & Controls
- Fuel Systems
- Hydraulics
- Motion Control
Best prospects for the UK Defense Market

- Full spectrum, multidomain ISR.
- Multidomain command and control.
- Technology to compete against adversaries below the threshold of conventional conflict.
- Technology to target adversaries in new ways across all domains.
- Generate affordable capabilities that can address evolving threats and can operate within a denied electromagnetic environment.

The MOD’s Defence and Security Accelerator
UK Space Sector

Ambitious agenda!

- Skynet 6 satellite telecommunications program
- 4 primary segments of the commercial space:
 - Space Applications (71%)
 - Space Operations (13%)
 - Space Manufacturing (12%)
 - Auxiliary Services (4%)
- 6 commercial launch sites planned
- Technology Safeguards Agreement signed in June 2020
- Spaceflight licenses now being issued
Market Entry Strategy

How will you develop your market entry strategy?

- Direct sales?
- Collaborative Partner Search?
- Manufacturer’s Representative or Consultant?
- Distributor?
- Conferences & Trade shows?
European Industry Events

- There is an event for all aspects of aerospace & defense
- There are numerous events for everything
- Participating at events is expensive
- You need to participate!
Best European Aerospace & Defense Events?

- Events that focus on B2B meetings
- Events that guarantee pre-arranged meetings
- Events that are focused on networking
Crossroads

PJ Menner
U.S. Commercial Service UK
pj.menner@trade.gov
Bob Dirgo has more than 36 years’ experience in the aerospace industry working for Meggitt. He has held a number of roles within Meggitt over his career in the operations organization. He has been the Director of Quality, Director of Continuous Improvement and the Director of Strategic Innovation.

He has a bachelor’s degree in Mechanical Engineering, a Master’s Degree in Statistics and has done PhD work in Operations Research at Case Western Reserve University.

Dirgo is an American Society of Quality certified Six Sigma Black Belt, Quality Engineer and Quality Auditor, certified Lean Manufacturing Practitioner, and certified Innovation Engineering Blue Belt from the Eureka Ranch.

He has published two books; a business management book entitled “Look Forward Beyond Lean and Six Sigma” and a self-help book entitled “How I Reversed My Hashimotos Thyroiditis.”

He has worked at the Ohio Aerospace Institute since 2020.
Update on Aerospace Trends

US Suppliers Perspective

Presented By: Bob Dirgo
The Aerospace Supply Chain Current Outlook

Business Aviation New Aircraft Deliveries
Forecast deliveries 2021-30 forecast

- Deliveries 8% lower than previous expectations over decade, 2021 = 21% and 2022 = 17% lower...
- 10,050 total deliveries over 10-years.
- 7,400 business jets / 2,590 turboprops
- "Light jets" lead recovery efforts, 28% share of jets/25% share overall by category.
- Turbos remain strong but lower than previous expectations.
- $236B retail delivery value over 10-years.

2021-30 Share of Unit Deliveries

Business Aviation In-Service Fleet Forecast

Fleet expands 6% 2021-30; grows at 0.6% CAGR over 10 years

2021 Fleet: 33,080 Aircraft
2030 Fleet: 35,002 Aircraft

Source: 2021 Business Fleet & MRO Forecast, Aviation Week Network, Copyright 2020
Business Aviation MRO Demand

MRO aftermarket analysis and the impacts from the pandemic

Pre-COVID-19 Forecast

Compared to previous forecast

-24%

Highlights
- 24% lower than previous projections, $102 billion MRO, grows at 2.3% CAGR 2021-30.
- Modifications demand grows at 1.9% CAGR, $33 billion demand.
- Over 57k major engine MRO events are expected during the 10-year forecast; 40 engine types.
- Engine MRO demand is $29 billion over the decade and grows the fastest at nearly 4% CAGR.

MRO Demand 2021-30
$102.1 BILLION

Commercial In-Service Fleet - Fleet expands 24% 2021-30

Asia dominates while narrowbody types grow to a share of 63% post-pandemic

2021 Fleet: 30,825 Aircraft
2030 Fleet: 38,299 Aircraft

Regional In-Service Fleet 2030 v. 2021

- Asia-Pacific
- Europe
- North America
- Latin America
- Middle East
- Africa

Fleet in Asia-Pacific grows 47% by 2030

Note: Regions at large, i.e. Asia-Pacific = India, Asia-Pacific and China

Source: 2021 Commercial Fleet & MRO Forecast, Aviation Week Network, Copyright 2020
Commercial MRO Demand by Region Grows 38%, 61% in Asia-Pacific

The outgrowth from the pandemic shows high initial growth rates from a low base. Operators in Asia will generate the largest amount of MRO demand throughout the forecast period.

Between 2021 and 2030, just over a third of all MRO expenses will be generated by Asia-Pacific alone, while world demand continues to increase at a healthy 3.6% CAGR globally over the decade, post-pandemic.

Demand is expected to experience significant expansion in Asia-Pacific and Middle East, with growths of 61% and 59% respectively.
Current & Future Headwinds affecting the Industry

COVID-19

Single-aisle jets get more popular, as wide-body planes phased out amid COVID-19

Pandemic Causes Historic Decline in Air Passenger Traffic

Global air passenger traffic (revenue passenger kilometers) as a percentage of 2019 traffic

- Baseline scenario
- COVID variant scenario

Source: IATA

The IATA predicts air travel demand to reach just 50% of 2019 levels in 2021.
Current & Future Headwinds affecting the Industry

Aviation...pushing for more Climate Change!

Jet Zero Consultation
A consultation on our strategy for net zero aviation

PARIS CLIMATE ACCORD
GLOBAL WARMING AGREEMENT

Green NEW deal
The Pentagon is asking for $52.4 billion to invest in the military’s air domain.

- 85 F-35 Joint Strike Fighters: $12 billion
- 14 Boeing KC-46 tanker aircraft: $2.5 billion
- 9 Lockheed Martin CH-53K King Stallion helicopters: $1.7 billion
- 12 Boeing F-15EX fighter jets: $1.5 billion
- 30 Boeing AH-64E Apache attack helicopters: $825 million

In November 2020, the British government approved the largest rise in its defense budget since the end of the Cold War, with £16.5 billion in additional funding made available for spending on shipbuilding, space, cyber, research and other sectors over the next four years.

The government said military modernization will be underpinned by a record investment of at least £1.5 billion extra and £5.8 billion in total on military research and development, including a commitment to further invest in the future combat air system.
Back to the future? Airline sector poised for change post-COVID-19
Future Trends – Innovations To Drive Sustainability

Lightweighting for Aerospace Applications

Honeywell Green Jet Fuel™
Meet renewable energy regulations through low emission jet fuels made from sustainable feedstocks

AVIATION COMPOSITES

New-generation GE jetliner engine parts made of SiC fibers

Aeroengine Composites, Part 1: The CMC Invasion

Light Weight Alloys

Source: GE Aviation

COMMERICAL AVIATION
ALTERNATIVE FUELS INITIATIVE
Future Trends – Innovations To Drive Sustainability

E-Fan X
A 2MW hybrid-electric aircraft demonstrator

- **Generator:** Power generation system
- **Engine:** One of four jet engines is replaced with an electric motor.
- **Energy Storage:** High-power battery pack
- **Electrical Supply:** 200VDC electrical distribution
- **Data Transmission:** High-band instrumentation with telemetry

X-57 MAXWELL

Global More Electric Aircraft Market

Opportunities and Forecast, 2023-2027

Global More Electric Aircraft Market is expected to reach $4,812.39 billion by 2027,
Growing at a CAGR of 15.5% (2023-2027)

NEAT configured to test a lightly distributed turboelectric aircraft. Credits: NASA
City of Hilliard, LIFT Aircraft, GhostWave Inc. and Parallax Advanced Research propose new, life-saving technology on Ohio’s first flying car.
Future Trends – Commercial Space Travel
Future Trends – Hyperloop
The next era of human mobility
Hyperloop Video

https://www.youtube.com/watch?v=uwm3qvFWVRU
Thank You
Stephen Kyle-Henney, Managing Director & Founder, TISICS

Stephen Kyle-Henney is Managing director and the founder of TISICS ltd. Stephen has been working on Lightweight metal composites for over 30 years and TISICS has a unique position as the only integrated continuous fibre metal composite supplier world wide. TISICS develops ultra lightweight titanium and aluminium composites reinforced with silicon carbide fibre to save 305 to 70% compared to conventional parts.

Stephen is leading the development for this in space systems and aviation where the renewed focus on net-zero carbon will require increased emphasis on weight reduction.
TISICS is pioneering lighter and greener, aircraft and spacecraft components with world leading metal composite and net-shape manufacture technologies.

Most significant advancement in forms of transport which result in significantly improved environmental footprint.

Pitch@Palace 11.0
2019 Finalist
The following presentation will aim to provide an overview of TISICS limited and our activities in Aviation and space sectors as well as a broader view of technology development opportunities in the UK from the viewpoint of a small company.

1) TISICS company overview- who we are and where we came from.
2) TISICS materials technology- A unique vertically integrated capability
3) Aviation Light weighting- 40% to 70% mass reduction
4) Space systems - Net shape and high-performance metal structures
5) TISICS growth plans- How to exploit advanced materials.

UK Space and Aviation developments – Will be discussed in context of the TISICS activity
1) UK Aerospace priorities- Some of the collaborative activities which are underway
2) UK Space technology development- Priority areas for UK R&D
TISICS has a unique composite technology

30% - 70% component system weight savings with TISICS composites

TISICS TITANIUM COMPOSITE TUBE (36g) WILL CARRY 5,000Kg

WEIGHT OF A CRISP PACKET

Transform metals for a greener, brighter future

TISICS mission:
TISICS and its predecessors have maintained UK independent access to silicon carbide fibre since the 1980s ensuring European access advanced light weight components without ITAR restrictions.

Technology Development

Technology Heritage

- TISICS and its predecessors have maintained UK independent access to silicon carbide fibre since the 1980s ensuring European access advanced light weight components without ITAR restrictions.

Technology & Capability Investment

- **£ 3.5m**
 Total capital investment since 2005

- **£ 7.99m**
 Total technology & process R&D

- **£ 14 m**
 Revenue to date

- **£ 1.5m**
 Management equity
Vertically Integrated Capabilities

World unique integrated composite manufacture
Two commercial silicon carbide fibre suppliers worldwide

- Fibre competitor based in USA and subject to ITAR/EAR controls
- Only commercial supplier worldwide with integrated fibre and composite capability

Certifications

MANUFACTURE

SiC Production Cleanrooms Furnaces & Vacuum Processing CNC: Lathes, Mills, Wire Eroder

DESIGN

CAD, FEA

TEST

Inspection, Analysis Tensile, compression, fatigue testing & NDE
Double the specific stiffness of engineering metals
Fabrication - base process
Technology Overview

TECHNOLOGY

CERAMIC FIBRE

TITANIUM, ALUMINIUM COMPOSITES

NET SHAPE FABRICATION

COMPOSITE MANUFACTURE

Near net-shape process minimises welding, joining and final machining
Aero Development & Traction

Research and Development (public programmes)
Co-funded by TISICS

Defensibility

- Safety-critical aero components and materials require extensive development
- Full process IP ownership
- 30yr+ tech investment by BP, MoD, QinetiQ
- 1 of 2 raw material suppliers worldwide (only European supplier)
- ONLY integrated fibre reinforced metal composite supplier worldwide

Existing customer relationships and TRL6 component development in place
Technology Overview

Selective Reinforcement

Net Shape Components

Thermo-mechanical Stability

Mixed Material Complex Shapes
TISICS activities are a stepping stone to a larger £200m market for which TISICS has extensive existing relationships.

TANKS, SPACE HARDWARE
- Propulsion tanks
- Robotic arms
- Spacecraft structures

AIRCRAFT STRUCTURES
- Main landing gear actuator
- Multiple landing gear components
- Side Stay (full-size)

AERO ENGINE STRUCTURES
- Bladed ring (bling)
- Ti MMC Bling up to 70% weight saving

Revenue
- £20m by 2030
- £60m by 2030
- £120m by 2030

AERO PARTNERS
- Rolls-Royce
- Safran
- GE Aviation
- AIRBUS

Builds on £20m pre-TISICS investment by BP and QinetiQ

£200m space, aero, defence business by 2030

>80% UK exports
High quality jobs
Brake Drive Bars

Challenge
- Heavy
- High operating temperature
- Exposed to harsh runway environments
- Heavier high strength steel with coatings or nickel alloys typically used

Solution
- Increased titanium (matrix) operating temperature >500°C

Outcome
- Tested, survived 3 lifetime cycles
- Passed simulated rejected take-off (997 °C)
- Corrosion resistant

30% LIGHTER
INCREASED THERMAL STABILITY
Aero Structures Case Study

Aluminium Wing Riblet

Original
Aluminium I-Beams

- Minimise mass
- Retain material compatibility with Al system
- Fixed attachment points
- High tension and compression loads
- Extensive machining required

Challenge

Solution

- Selectively reinforced
- Simple 0° lay-up for maximum load
- Net-shape minimises machining
- Ease of system integration (Al bolt holes)

TISICS Aluminium Composite

Outcome

30% LIGHTER
Major UK Development for landing Gear

SIDE STAY

- 42% MASS SAVING
- 47,400 Tonnes CO₂ saving across world fleet

LIGHTLAND OUTCOMES

- COP26 full-scale demonstrator
- Fully functional prototype tested by Safran
- Materials characterisation
- LCA, LCC and environmental analysis

MLG upgrades (30% weight saving)

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>CO₂ Emission (mT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A330</td>
<td>0.7</td>
</tr>
<tr>
<td>A350 / B787</td>
<td>2.9</td>
</tr>
<tr>
<td>A320 / B737</td>
<td>>4.5</td>
</tr>
</tbody>
</table>
Development Process

TISICS Landing Gear Project 10

- define design to sub-scale and full-scale demonstrator components
- optimise for component loading conditions
- evaluate optimal manufacturing methodologies
- Further develop modelling capability
- materials characterisation to demonstrate manufacturing repeatability
- LCA and LCC analysis to address economic performance
- validate environmental benefits
TISICS Landing Gear & Brake Development Parts

- **ACTUATORS**
 A320 full-size

- **SIDE STAY**
 A320 full-size

- **BRAKES**
 A340 full-size

- **LINKAGES**
 Multiple platforms

- **WHEEL BOLTS**

- **TORQUE PIN**
 A340 full-size

- **BOGIE PIN**
 A350 full-size

- **BRAKE ROD**
 A340 full-size

- **TISICS Landing Gear & Brake Development Parts**

© Copyright 2021 TISICS Ltd.
COMMERCIAL IN CONFIDENCE

www.tisics.co.uk
info@tisics.co.uk
@TiMetalMatrix
uk
TISICS Value Proposition: Impact of light-weighting

Significant cost-savings

Original Steel Component (22.34kg)

TISICS Aluminium Composite Component (10.46kg)

11.88kg saved

Lightweight components significantly reduce airline operating costs over the life of an aircraft.
Spacecraft Tanks: Supply Challenge

Current tank supply: machined forgings

<table>
<thead>
<tr>
<th>HEAVY TANKS</th>
<th>LIGHTWEIGHT TANKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickened weld regions for strength, increase mass around closures, mounts and attachment points</td>
<td>Single-piece design minimises wall-thickness across entire cross-section, resulting in lower mass</td>
</tr>
<tr>
<td>40 kilograms</td>
<td>35% lighter</td>
</tr>
<tr>
<td>18 months</td>
<td>70% faster</td>
</tr>
<tr>
<td>>£100k</td>
<td>LOW COST</td>
</tr>
<tr>
<td>EXPENSIVE</td>
<td>Single-piece tank liner eliminates the need for weld, minimises machining and need for expensive inspection</td>
</tr>
<tr>
<td>90% waste</td>
<td>40% cheaper</td>
</tr>
<tr>
<td>WASTEFUL</td>
<td>MINIMISES WASTE</td>
</tr>
<tr>
<td>Expensive 1000kg titanium forgings machined to very thin-wall tanks, ultimately weighing 40kg.</td>
<td>Additive manufacture minimises waste of expensive raw material</td>
</tr>
<tr>
<td>6 satellites/yr</td>
<td><15% waste</td>
</tr>
<tr>
<td>LOW SATELLITE NUMBERS</td>
<td>HIGH THROUGHPUT</td>
</tr>
<tr>
<td>Automation uneconomical</td>
<td>Robotic assembly into satellite</td>
</tr>
</tbody>
</table>
| >20 satellites/mo | ThalesAlenia Space
| TISICS | UK SPACE AGENCY
| Lightweight & short lead time spacecraft tank | TiMetalMatrix

TISICS solution: lightweight tanks
Space Market Entry: Focused Product Approach

Template for R&D Transition to Products

- Identified niche product opportunity with high barriers to entry
- Recruited customer-recommended industry experts in tank design, manufacture and system deployment
- Developed product technology in collaboration with customers to ensure development fits current and future product needs
- Broad customer base with wide product and platform compatibility
- TISICS-driven product development for early market entry

Tank Development

Thin wall, high performance tanks developed to scale across multiple satellite platforms.

Test Sheets
Burst Tubes
Sub-scale Shell manufacture
Bread Board Model incl. Attachment feature
Test coupons design and size to meet test standards. Burst test tube sized to fit TISICS test rigs. Sub-scale constellation satellite design. Demonstration tanks representative of LEO/MEO spacecraft propulsion systems.

Research and Development funded by TISICS non-dilutive grants and customers.

Technology and Manufacturing Readiness Timeframe

High pressure tank 2010
ITI Spherical tank 2012
NEO Sat tank 2012-2015
Hydrogen peroxide tank 2016-2018
Twin tank 2016-2018
Robotic fabrication development 2016-2020

Revenue

Qualification & IP

Products

Demonstrators

Conception & concept validation

Pressure vessel development

Development supported by customers

© Copyright 2021 TISICS Ltd. COMMERCIAL IN CONFIDENCE info@tisics.co.uk @TiMetalMatrix www.tisics.co.uk
Robotic Arms

Original CFRP Structure

Need for:
- high strength, high stiffness solution
- thermal conductivity
- durability

EASY TO INTEGRATE METAL JOINTS

ULTRA HIGH STRENGTH & STIFFNESS STRUCTURE

INTEGRAL METALLIC END FITTINGS

Lightweight Metal Composite Structure

- incorporated 3-D printed end fittings (diffusion bonded)
- eliminated welded joints

LIGHTER SOLUTION
Joining Dissimilar Metals

Mixed metal technology development

- Propellant and gas transition tubes e.g. titanium to stainless-steel
 Other material combinations (e.g. aluminium to titanium) are under development in current development programmes

- Cladding of internal surface
 Addresses compatibility issue for e.g. titanium clad with aluminium for hydrogen peroxide
Decarbonising Aviation through MMCs

TISICS technology efficiency upgrades to existing aircraft fleets
TISICS technology integral to future aircraft platforms

Expected service entry:

2023 Flight trials
2024 1
2025 2
2026 3
2027 4
2028 5
2029
2030

TECHNOLOGY EMERGENCE
TECHNOLOGY DIFFUSION
TECHNOLOGY NEW NORMAL

GHG Emissions Impact

TISICS technology efficiency upgrades to existing aircraft fleets
TISICS technology integral to future aircraft platforms

ENGINE
Bling engine parts alone could save 3% fuel on commercial airlines (IATA Roadmap for delivery 2030)

LANDING GEAR
30% mass reduction would save 3.7m Tonne CO₂ emissions/yr across A330 & A350 fleets (IATA Fixed Trade calculation)

IMAGE COURTESY ROLLS-ROYCE

WING
Al-MMC wing ribs and brackets, Ti-MMC actuators and gear beams: 20%–30% mass saving (GE UK and Airbus ATI projects)

IMAGE COURTESY ROLLS-ROYCE

SUPPORTING IMAGE
Ultra-lightweight liquid hydrogen tanks under development based on TISICS Space capability. >30% gravimetric index targeted to meet aviation needs.

IMAGE COURTESY AIRBUS

HYDROGEN STORAGE
MMCs provide mass, performance & assembly automation potential for blended wing truss structures. Development work with Reaction Engines demonstrated technology viability.

IMAGE COURTESY AVIATION JOURNAL
Manufacturing capacity

- TISICS operates a 15,500 sqft (1435 sqm) manufacturing facility in Farnborough, UK.
- This includes fibre and composite manufacturing and is the only site of its kind worldwide.
- Farnborough site has the capacity for development including increased fibre capacity to 450kg.
- Future expanded production plant planning in progress to meet increasing space and aerospace demand.
TISICS intends to be the world leading industrial supplier of metal composites.

Come talk to us.

Mr. Stephen Kyle-Henney
Managing Director
+44(0) 7798 656 761
skylehenney@tisics.co.uk

Ms. Ayantika Mitra
Business Strategy Director
+44(0) 7815 863 150
ayantikamitra@tisics.co.uk

Mr. Mick Iles
Aerospace Systems Director
+44(0) 7854 748 198
miles@tisics.co.uk
John Sankovic, Ph.D., CEO & President, Ohio Aerospace Institute

John Sankovic prioritizes developing multi-university partnerships, driving research from university laboratories to Ohio’s industrial aerospace manufacturers and fostering novel collaborations between governments, industries and private organizations.

Sankovic had a distinguished 31-year career at NASA, where he served as center chief technologist and director of the Office of Technology Incubation and Innovation. There, he received numerous awards, including the NASA Outstanding Leadership Medal, six Agency Honor Group Achievement Awards and an R&D100 technology innovation award.

An industrious academic, Sankovic earned his bachelor’s and master’s degrees in mechanical engineering from The University of Akron, his MBA degree from Cleveland State University and his master’s and doctorate degrees in biomedical engineering from Case Western Reserve University. He is a registered professional engineer in the State of Ohio with distinction by the Ohio Society of Professional Engineers for highest achievement on both licensure examinations. He holds three U.S. patents.
UK-Ohio Aerospace Joint Growth Opportunities

Dr. John M. Sankovic
President and CEO
Ohio Aerospace Institute
We’re proud Ohio has easy access to US and Canadian population centers. Many see location this way:
National position

• Third for manufacturing output
• Second for aerospace infrastructure
• Third for aerospace industry size
• Second overall most attractive state for aerospace manufacturing (PricewaterhouseCoopers, 2020)
• Largest supplier state to Airbus and Boeing (combined spending of more than $17 billion annually in Ohio)

Source: www.jobsohio.com
National position

• Third for manufacturing output
• Second for aerospace infrastructure
• Third for aerospace industry size
• Second overall most attractive state for aerospace manufacturing (PricewaterhouseCoopers, 2020)
• Largest supplier state to Airbus and Boeing (combined spending of more than $17 billion annually in Ohio)

Source: www.jobsohio.com
Ohio jobs supported by UK companies

- 49,100 Ohioans employed by UK subsidiaries in 2018
- 20,640 jobs are supported by exports from Ohio to the UK worth $3.8 billion in 2019.

Value of exports to the UK from Ohio

- The UK was the 4th largest export market for Ohio in 2019
- Total value of Ohio goods exports to the UK$1.9 billion
- Total value of Ohio services exports to the UK$1.9 billion

Source: www.uk.gov
Top Ohio goods exports to the UK

<table>
<thead>
<tr>
<th>Product</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerospace products and parts</td>
<td>$663 million</td>
</tr>
<tr>
<td>Motor vehicle parts</td>
<td>$222 million</td>
</tr>
<tr>
<td>Nonferrous metal products</td>
<td>$108 million</td>
</tr>
<tr>
<td>Miscellaneous general purpose machinery</td>
<td>$78 million</td>
</tr>
<tr>
<td>Miscellaneous fabricated metal products</td>
<td>$78 million</td>
</tr>
</tbody>
</table>

Source: www.uk.gov
Future trends in Aerospace

FASTER
- Commercial Supersonic
- Low-boom enabled

NEWER
- Flying cars and cargo
- eVTOL and autonomy enabled

CLEANER
- Rethinking the fleet
- Electrification enabled

FARThER
- Commercial cislunar activities
- ARTEMIS ACCORDS
Space Economics
Rockets, Remote Sensing, Telecommunications
Government supports infrastructure development
-Private Companies Provide Services
-Private Commerce Flourishes

Moving Space Operations beyond 400 km.
FASTER. (again)

Aerion and Ohio-based Netjets partner for Commercial Supersonic Transport
New transportation modes. Integrated into existing infrastructure.

Beta Technologies plans eVTOL work in Dayton, Ohio, charging station at Akron-Canton Airport, Ohio.
Thank You!
Nichola Bates Global Accelerators and Innovation Programs, Boeing

Nichola joined Boeing over four years ago, following a decade-long career working with early stage and scaling startups, where she championed the role of the SME to government, particularly in the security and resilience sector. Nichola brings extensive experience of international business development and fundraising for growth, from strategy through to execution; with a wide network across governments and industry. Having also gained experience of working inside one of the world's largest corporations she has become even more passionate about the benefits of collaboration between startups and corporates. In her role as Managing Partner for Aerospace Xelerated, Nichola invests in and supports startups that have the potential to disrupt or transform the aerospace sector.
Convergence of rapidly advancing technical capabilities with shifting market trends & consumer expectations.

TECHNOLOGY
Increased computing capabilities enabling autonomy, data analytics and AI.

INVESTMENT CAPITAL
Increased capital investment enabling new players and unlocking new markets.

SUSTAINABILITY
Increased demand from stakeholders and society for a cleaner ecosystem.

TALENT
Increased competition and demand for human capital across all industries.

BUSINESS MODELS
Business model disruptions are overturning industries.

GLOBAL CHANGES
Global economic & demographic shifts are altering consumer desires.
FOCUS AREAS

MOBILITY TRANSFORMATION

Accelerating the transformation of transportation via new platforms, products and propulsion systems.

SPACE & CONNECTIVITY

Launching us into the next generation of space exploration & enhancing connectivity from seabed to space.

INDUSTRY 4.0

Disrupting the business environment through innovative approaches, technologies, materials and training.

DIGITAL ACCELERATION

Driving differentiation and productivity through computing, usage of data sets and artificial intelligence.
The program- and event-driven toolbox allows us to identify our strengths and resources to better meet the needs of our stakeholders.
Aerospace Xelerated Programs

Aligning autonomy & AI Boeing champions to capability areas to ensure buy in
Alan Fisher

With 35 years’ experience in the sector, Alan is working to grow the membership of the UK’s longest established aerospace and defense trade body.

FAC supports hundreds of companies mainly in the south and south east that work in the aerospace sector and its supply chain.
- FAC is a not-for-profit trade association acting as a facilitator of business between large global primes and the supply chain in the South East and East of England.

- FAC has 130 fee paying members with a vast array of capabilities.

- FAC is in Farnborough, Hampshire – ‘The Home of UK Aerospace’.

www.fac.org.uk
UK Aerospace Major Suppliers

www.fac.org.uk
Aircraft Major Systems & Segments

- Structures
- Helicopters
- Propulsion
- Landing Gear
- Systems
- Aftermarket

www.fac.org.uk
Coherent Industry Strategy

The Aerospace Growth Partnership (AGP) brings together the UK Government and industry to tackle barriers to growth, boost exports and grow high value jobs. The AGP industrial strategy for UK aerospace includes a range of measures to make the UK a world-leading environment for investment, including long term certainty around the availability and levels of funding for R&D. It is being implemented across the breadth of the UK: England, Northern Ireland, Scotland & Wales.

The structure of the AGP, comprising around 100 reps from companies of all sizes, and Government is below:

£1.95Bn to 2026 matched by industry

www.fac.org.uk
Future Flight Challenge

The Future Flight Challenge

Demonstrates aviation systems incorporating low environmental impact, electrified, increasingly autonomous air vehicles and airspace management by 2025.

Pioneers an accessible airborne mass transit and service delivery system.

Unlocks new aviation markets worth over $2Tr and enhances UK prospects in the $17Tr conventional aviation markets to 2050.

Airborne transformation of UK connectivity, exports, productivity and mobility.

UK Research and Innovation

www.fac.org.uk

Serving the South and East of England
Future Flight Challenge Work Streams

Addressing the Future Flight Challenge

Future Air Transport & Services as a System of Systems
- System of systems architecture
- Synthetic modelling environment
 - Assess safety, environmental and economic impact
- Public engagement and survey

New models of airspace management and anticipatory regulation
- Synthetic environment for airspace management system
- Airspace management demonstration – drones in cities

Novel Air Vehicle Demonstrators
- Drones with scalable autonomy
- All Electric/Hybrid VTOL
- All Electric/Hybrid CTOL

Ground Infrastructure Systems Demonstrators – city & sub-regional airport
- Drone services
- Electric air vehicles

New operating models for users and commercial operators of air services
- Future market/synthetic environment
- Drone system services demos
- Business models for electrified urban and sub-regional air vehicles

Engagement of authorities is critical (including DfT, BEIS, Local and City Authorities, TfL, CAA, OFGEM)

UK Research and Innovation

www.fac.org.uk

Serving the South and East of England
Aerospace Technology Institute

- An independent institute, funded by the UK Government and industry
- Established to help oversee a £3.9bn R&T investment programme out 2026 to grow the UK’s aerospace industry
- Works with Innovate UK and BEIS to stimulate collaborative projects
- Leads initial industry engagement on the development of projects

www.fac.org.uk

Serving the South and East of England
To realise zero-carbon emission commercial flight by the end of the decade.

www.fac.org.uk
Aviation’s Carbon Challenge

885 million
- tonnes of global CO2 emissions from aviation each year
 - David S Lee, 2018

38.3 million
- commercial flights in 2019
 - ICAO, 2020

4.5 billion
- Total global passengers in 2019
 - ICAO, 2020

22 million
- litres of kerosene used from Heathrow every day in 2019
 - Rix, 2021

1.5%
- potential impact of contrails on warming effect
 - David Lee et al., 2020

0
- Target carbon emissions for FlyZero Aircraft

www.fac.org.uk

Serving the South and East of England
Team FlyZero

The FlyZero Team is made up of experts on secondment from the organisations shown here as well as independent applicants.
Working with the whole ecosystem

www.fac.org.uk
NATEP

- Focussed on driving innovation at lower levels of the supply chain
- Encourage supply chain partnerships with customer participation
- Support R&D management in the supply chain
- Focus on middle TRLs

National Aerospace Technology Exploitation Programme (NATEP)

£40M invested so far (including £23M from Government)

1,200 jobs through 100 projects

To support technology development throughout the supply chain

www.fac.org.uk

Serving the South and East of England
Sharing in Growth

£250 million Sharing in Growth performance improvement programme, backed with £80m public funding, to get up to 64 companies up to world class levels of competitiveness. It has now delivered over 1 million training hours, and the lead 43 have already confirmed winning in excess of £1.6 billion of contracts as a result of participating.

www.fac.org.uk
SC21 - Supply Chains for the 21st Century

- SC21 is an improvement programme designed to increase the performance of UK suppliers and ultimately their supply chains.
- Endorsed by all major UK aerospace and defence companies.
- Over 750 companies within UK supply chain are SC21 signatories with >100 award winners.
- Defines performance goals and standardizes the approach and tools for continuous sustainable improvement.
- A collaborative effort with ADS leading the programme at a national level, working with signatory companies, primes, regional trade associations (RTAs), strategic partners and accredited training providers.
- Overseen by the Aerospace Growth Partnership (AGP).
- Plans for SC21 to be enhanced via Supply Chain Competitiveness Charter and cross sector National Manufacturing Competitive Level (NMCL) SC21 Competitiveness+Growth (C+G) programme.

[Link: www.fac.org.uk]
Going Forward

• UK Mission 20221/22

• Farnborough 2022

www.fac.org.uk
Want to know more......

For more information or to discuss how we can help you achieve your requirements please contact Alan Fisher on:

www.fac.org.uk
Conclusion, Question and Answer Session

Submitted questions will now be answered by panelists.